

Pumping element

Type PEH 1000 bar

1000 bar 0,16 up to 1,23 cm³/stroke

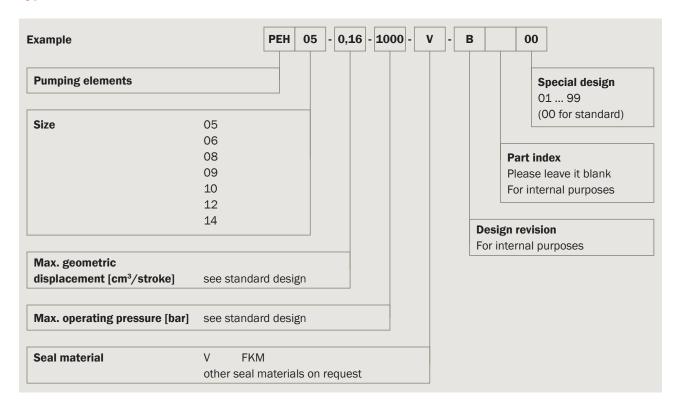
Features

- · Self priming
- High reliability
- The direction of flow is independent of the direction of rotation of the actuator
- Very high efficiency due to high manufacturing accuracy

Applications

- For manually operated pumps in which the pump element is actuated by a lever
- For pumps in radial design with an eccentric shaft bearing as drive
- The pump element must always be immersed in the medium

Design

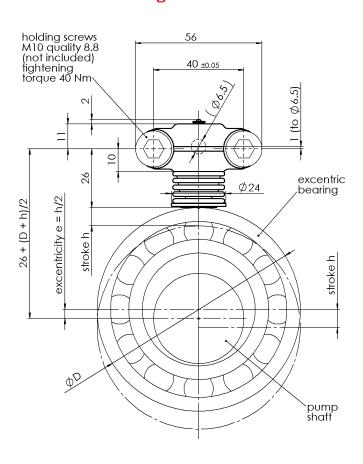

- Consists of a cylinder with built-in non-return valves in the suction and the pressure port, a piston and a piston return spring
- The medium is sucked in at the front, the pressure outlet is at the side of the piston movement
- The direction of flow is determined by the suction and pressure valves and cannot be reversed

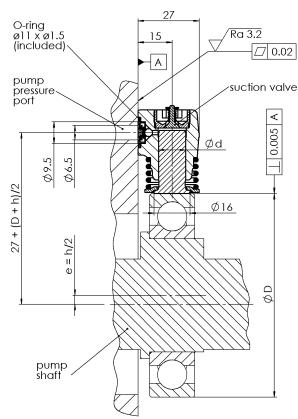
Technical Data

Hydraulic fluid	Mineral oil according to DIN 51524 (other fluids on request)				
Fluid temperature range	-20 up to 80 °C				
Viscosity range	12 to 400 mm ² /s				
Max. operating pressure	1000 bar (Exceptions see standard design)				
Filtration (recommendation)	According to NAS 1638 class 6 resp. ISO/DIN 4406 17/15/12				
Max. speed	2000 min ⁻¹				
Installation position	Any				
Suction	-0.042 bar (gives max. 500 mm of suction height with hydraulic oil)				
Fixation screws (not included in the scope of supplier)	M10 x 30 Quality 8.8 Tightening torque 40 Nm				
Weight	See standard design				
Material	Piston: Case-hardened steel Cylinder: Heat treated steel				

up to 1000 bar 0,16 up to 1,23 cm³/stroke

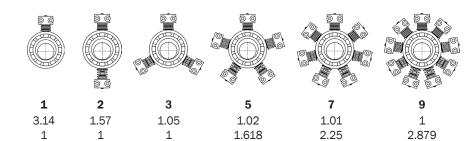
Type code





Standard design

Size	Piston Ø [mm]	Stroke max. [mm]	Max. geom. displacement [cm³/stroke]	Max. flow rate at 1'450 rpm [l/min]	Operating pressure max. [bar]	Piston force per bar [N/bar]	Weight ca. [g]	Part No.
05	5	8	0,16	0,23	1000	1,96	156	4000832
06	6	8	0,23	0,33	1000	2,83	156	4000835
08	8	8	0,40	0,58	1000	5,03	159	4000838
09	9	8	0,51	0,74	1000	6,36	160	4000841
10	10	8	0,63	0,91	900	7,85	161	4000844
12	12	8	0,91	1,31	850	11,31	161	4000850
14	14	8	1,23	1,78	100	15,38	159	4474908


Dimensional drawings

up to 1000 bar 0,16 up to 1,23 cm³/stroke

Layout

Calculation of driving motor power

$$P = \frac{p \cdot V_g \cdot n \cdot k}{\eta_s \cdot 600 \cdot 10^3}$$

Number of pistons

k (kinematic pulsation factor)

f (geom. load multiplication factor)

P required driving power [kW]

p system pressure [bar]

V_G displacement [cm³/stroke]

n rotation speed [rpm]

 $\eta_t \;\;$ overall efficiency, approx. 0.8

k kinematic pulsation factor

Calculation of the piston force

Check the Hertzian stress at the contact line between piston and the eccentric bearing. Setthe piston diameter d as diameter of the piston surface.

Force generated by the pressure of each piston:

 $F_H = 0.0785 \cdot d^2 \cdot p = \mathbf{R} [N/bar] \cdot \mathbf{p} [N]$

F_H hydraulic force per piston [N]

d diameter of piston [mm]

p system pressure [bar]

R piston force per 1 bar [N/bar]

Calculation of the bearing loads

It is required to calculate the bearing's expected life.

The resulting load on the eccentric bearing is a function of the number of pistons:

 $F_{R} = f \cdot F_{H}$

F_R total load on the eccentric [N]
F_H hydraulic force per piston [N]
geom. load multiplication factor

Piston loads

Keep in mind that the piston forces are concentrated on single points around the outer ring of the bearing, submitting the latter to bending loads. With large piston diameters, high pressure and few pistons it may be advisable to fit a bearing with a thicker outer ring (e. g. cam follower).

Accessories

Item description	Part No.
1 x socket head screw ISO 4762 - M10 x 30 - 8.8-A3B	6072101

Bieri Hydraulik AG

Könizstrasse 274
CH-3097 Liebefeld
Tel. +41 31 970 09 09 | Fax +41 31 970 09 10
info@bierihydraulics.com | www.bierihydraulics.com

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.